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Preface

Flow-Induced Vibration and Noise, and the physical parameters which
control them, are of significant importance to design engineers and
operators of systems in a wide range of industries ranging from aerospace,
automotive and civil engineering to marine structures, electricity generation
and chemical processing. The potential of these phenomena to cause
catastrophic failure to engineering systems and unacceptably high levels of
environmental and occupational noise has motivated significant effort to

understand and mitigate these problems in the interests of human safety.

FIV2012 is the tenth in a series of international conferences on Flow-Induced
Vibration which started at Keswick in 1973 primarily in response to the needs
of the nuclear industry. The conference is held every four years with the 7th
and 8th international FIV conferences being held in Lucerne, Switzerland
and Ecole Polytechnique, Paris respectively. The most recent in the series
was held in Prague in 2008. While many of the problems that appeared in
the first FIV conference are still under investigation (e.g. flow induced
vibration of tube arrays with cross flow or pipes with axial flow), subsequent
conferences have evolved into major international events with a continually
wider scope of papers in the field of flow-induced vibration and fluid
structure interaction. Furthermore, over the past four decades, noise in
confined or bluff body flows has emerged as a related and equally

problematic issue to flow-induced vibration.

There has been an Irish contingent at FIV conferences from the outset; Prof.
John Fitzpatrick, an Irishman of some renown, was one of the delegates at
the very first meeting in 1973. Therefore, we have great pleasure in
welcoming over one hundred delegates, coming from every continent, to
Trinity College, Dublin to present and discuss their work. This is the

proceedings of that meeting.

Craig Meskell, Gareth Bennett, Trinity College, Dublin
July 2012
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ABSTRACT

The subject of this paper is the investigation of the
three-dimensional  dynamics of a fluid-conveying
cantilevered pipe fitted with an end-mass and additionally
supported by an array of four springs, attached at a point
along its length. In the theoretical analysis, the nonlinear
equations of motion are discretized via Galerkin’s method,
and the resulting equations are solved via Houbolt’s finite
difference scheme along with the Newton-Raphson
method. Experiments were conducted and good qualitative
and quantitative agreement with the analytical results was
obtained.

INTRODUCTION

The linear dynamics of a plain fluid-conveying
cantilevered pipe (i.e. without additional springs or other
adornments) has been investigated for many years [1-6].
Some early studies on this system in the presence of
additional adornments have been conducted [7, 8],
considering the system with an intra-span spring, or a
system fitted with additional point masses [9, 10, 11]. The
first linear study on a cantilevered pipe with both intra-
span spring support and an additional point mass has been
conducted in [12], finding that in some cases there arise
two Hopf bifurcations, involving different flutter modes,
separated by a region of stability.

The first studies on the nonlinear dynamics of fluid-
conveying pipes, in the 1980s [13, 14], coincide with the
development of theoretical models for the study of 3-D
motions of the pipe. Soon after, in the late 1980s and the
90s, the first nonlinear studies on the system with intra-
span spring support [15-17] and an end-mass [18] started
appearing. The work in [17] was later extended for 3-D
motions of pipes fitted with an end-mass and an intra-span

spring support [19-22]. Building on the work in [19-22],
here the nonlinear 3-D dynamics of the system is explored
in the simultaneous presence of an end-mass and intra-
span spring support. The incentive is the expectation that,
since each of these added features engenders very
interesting dynamics, the two together would do so even
more.

PROBLEM STATEMENT, EQUATIONS OF
MOTION, AND METHOD OF SOLUTION

Problem statement

A schematic representation of the system considered
is shown in Fig.1 (a, b). The system consists of a tubular
beam of length L, inner/outer diameter D; /D,, flexural
rigidity EI, density p,, and mass per unit length m,
conveying fluid of density pr and mass per unit length M,
with flow velocity U. A concentrated mass m, is attached
to the free end of the pipe and an array of four springs of
individual stiffness k, arranged at an angle & with respect
to the z axis, is attached to the pipe at a distance s = L, S
being the distance along the generally deformed pipe,
measured from the clamped end.

3-D nonlinear equations of motion

The three-dimensional (3-D) nonlinear equations of
motion, for the system with additional intra-span spring
support as well as an end-mass, have been derived
previously in Ref. [19] via Hamilton’s principle.

The resultant equations in dimensionless form in the
two orthogonal directions y and z (Fig.1(b)) are given by
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FIG.1. SCHEMATIC REPRESENTATION OF A FLUID
CONVEYING CANTILEVERED PIPE WITH AN
ARRAY OF INTERMEDIATE SPRINGS AND AN END-
MASS: (a) DEFORMED SYSTEM; (b) TOP VIEW
SHOWING THE FOUR-SPRING CONFIGURATION,
LOCATED ALONG THE PIPE LENGTH AT X = Ls.
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In Egs. (1)-(4), s is the dimensional and ¢& the
dimensionless distance along the pipe from the fixed end,
& the dimensionless location of the attachment point of the
springs, 7 and ¢  the dimensionless transverse
displacements in the y and z direction, respectively, and t
and 7 are the dimensional and dimensionless time,
respectively; k is the linear stiffness of each spring of the
four-spring array at s = Lg; Ly and R, are, respectively, the
unstretched and stretched length of each spring; the
subscripted Ks are constant coefficients related to the
spring array, the subscripts identifying the direction to
which they are related (x, y or z) and whether they are
associated with the linear (1) or nonlinear (nl) components
thereof, while the subscripted xs are the corresponding
dimensionless constants. Other than the spring- and force-
related system parameters, S and y are the dimensionless
mass and gravimetric parameters, respectively, I" is a
dimensionless  end-mass parameter, and u the
dimensionless flow velocity. Moreover, 4, as in 6(&-& ), is

the Dirac delta function, equal to 0 or 1 accordingly as &*
&and ¢ = &; also, (0 —> &, )stands for the Heaviside

function, having a value of 1 in the interval [0, &] and zero
elsewhere.

Method of solution

The dimensionless equations of motion, Egs.(1) and
(2), are discretized via the Galerkin method using the
eigenfunctions of a plain cantilevered beam as appropriate
comparison functions. Houbolt’s finite difference scheme
along with the Newton-Raphson method are employed to
solve the resultant discretized equations, yielding the time-
varying generalized coordinates. From time histories of
the generalized coordinates and the reconstructed 7 (&,7)
and ¢ (&) time histories, bifurcation diagrams, phase-
plane plots, power spectral densities (PSDs), probability
density functions (PDFs), and autocorrelations were
constructed at points of interest in the parameter space.
PSDs have been obtained via the Fast Fourier Transform
technique.

In the results presented in this study, eight beam modes
are employed in each transverse direction (7 andd
directions); totaling 16 beam modes. This is sufficient to
give converged results. To make sure that this is true, 10
beam modes in each direction (totaling 20 beam modes)
have been employed, and convergence was confirmed.

Of course, to obtain #(£,7) and (&, 7), initial conditions
must be utilized. If all initial conditions, for all generalized
coordinates, are in one direction only, the resultant
solution is 2-D in that direction, even if a set of initial
conditions with components both in the y and z directions
yields 3-D motion; obviously the latter is preferred. All
results presented in this study have been obtained using
the same initial conditions for all flow velocities.

In the theoretical calculations, the following
parameters, corresponding to the system used in the
experimental study, have been used: L =0.443 m, D;=6.4
mm, D, = 15.7 mm, El = 7.42 x 10°® N-m? p, = 1167
kg/m®, pr = 999 kg/m®, m = 0.189 kg/m, M = 0.0320
kg/m, L, = 0.0635 m, k = 17.63 N/m, R, = 0.1160 m and
0.1640 m (for 6= 0° and 45°, respectively); y=25.3, 8=
0.145and I'=0.1.

THEORETICAL RESULTS

The spring-support is located at & = 0.2, near the
clamped end of the pipe, and for the sample results
presented in this paper all four springs are in the same
plane; = 0° (see Fig.1), two on each side. A point mass
with 7"= 0.1 is attached at the free end.

The bifurcation diagram for this system, illustrating
the dimensionless maximum and minimum free-end
displacements # and ¢ , respectively in the y and z
directions, versus dimensionless flow velocity, u, is shown
in Fig.2.
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FIG2. BIFURCATION DIAGRAM FOR THE PIPE
WITH 6= 0° (THE SPRINGS ARE ALIGNED ALONG
THE Z-AXIS), &=0.2,and I"'=0.1.

As shown, the system remains at its original
equilibrium position prior to losing stability by a
supercritical Hopf bifurcation in the 7 direction at u = 5.6,
giving rise to a periodic oscillation. Figure 3 shows (a) the
time history, (b) the motion of the free end (tip) of the pipe
in a plane perpendicular to the pipe, (c) the phase-plane
portrait for the 7 motion, (d) a PSD plot for the 7 motion,
showing the main frequency of oscillation f = 2.93 (in
cycles per dimensionless second), as well as harmonics
thereof, (e) the PDF of the 5 motion, displaying two
prominent peaks at the extremes of the displacement as an
identifier of periodic motion, and (f) the autocorrelation of
the 7 motion, which is periodic with time.

At u = 9.2 (see Fig. 2), the motion is 3-D
quasiperiodic, with larger amplitude in the ¢ direction (in
the plane of the springs and the pipe). The return to
periodic flutter at u = 9.3 is accompanied by an amplitude
jump, as shown very clearly in Fig.2. Before the amplitude
jump, say at u = 9.0 the motion is periodic and it involves
mainly first and second beam-mode travelling-wave'
components, the latter being dominant; whereas, at u =
9.3, the motion is again periodic but of considerably
smaller amplitude, with the third beam-mode dominant.
This jump phenomenon is also accompanied by a
frequency jump fromf=3.42atu=9.0tof=6.65atu=
9.3.

At u = 9.8, the system oscillates in the ¢ direction as
well; the 3-D periodic oscillation displays a figure-of-
eight-cross-sectional form. This periodic motion becomes
3-D quasiperiodic once again at u = 10.0, as seen in Fig.4
(fl = 0.47 and f2 = 647, f3 = 2f2 -f]_ and f4 = 3f2 -2f1 et
seq.).

The motion becomes chaotic in the range 10.2<u<11.6,
except for a window at u = 11.4, where the motion is
periodic.

! A travelling-wave component is characterized by the
instantaneous node(s) and antinode(s) moving with time along the pipe.
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FIG.3. PLANAR OSCILLATIONS FOR THE SYSTEM
WITH 0 = 0° AND & = 0.2 AT A DIMENSIONLESS
FLOW VELOCITY OF u = 5.6: (a) TIME TRACE OF
(SOLID LINE) AND ¢ (DASHED LINE); (b) THE
MOTION OF THE FREE END (TIP) OF THE PIPE IN A
PLANE PERPENDICULAR TO THE PIPE; (c-f)
PHASE-PLANE DIAGRAM, PSD PLOT, PDF, AND
AUTOCORRELATION OF THE 5 MOTION.

EXPERIMENTAL INVESTIGATION
Apparatus, procedure and data analysis

Experiments were conducted with a silicone rubber
pipe and an aluminium end-mass with the geometrical and
physical characteristics corresponding to the theoretical
values mentioned in the previous section. A closed-circuit
water circulation system, similar to the system utilized by
Paidoussis et al. [20], was used; its description can be
found therein.

The procedure in the experimental investigation and
data analysis are described in what follows.
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FIG4. 3-D QUASIPERIODIC MOTION FOR THE
SYSTEM WITH 6= 0° AND & = 0.2 AT u = 10.0: (a)
TIME TRACE OF7 (SOLID LINE) AND ¢ (DASHED
LINE); (b) TOP VIEW OF THE TIP DISPLACEMENT;
() PHASE-PLANE DIAGRAM OF THE 5 MOTION ;
(d) PSD PLOT OF THE 7 MOTION, SHOWING THE
DIMENSIONLESS FUNDAMENTAL FREQUENCIES f,
= 047 AND f, = 647; (e, f) PDF AND
AUTOCORRELATION OF THE 5 MOTION.

(i) The flow rate was increased from zero gradually,
allowing enough time for the transient
motions to die out. The dynamical behaviour

of the system was first observed
qualitatively,  before  undertaking any
measurements.

(if) The experiment was then repeated several times,
this time recording the flow velocities at
which the qualitative behaviour changed
(higher order bifurcations occurred), along
with video recordings of the observed
motions.

(iii) For each state, the displacement of a point along
the pipe length was measured with the
Optron 806-50-X instrument, which is a non-
contacting optical tracking system, allowing

the measurement of the transverse
displacement of that point of the pipe.

(iv) The recorded signal (time trace) was filtered and
stored in the computer by means of
LabVIEW. An FFT spectral analysis was
then made by implementing Welch’s method

in MATLAB. The FFTs, PDFs and
autocorrelations  helped in identifying
periodic, quasiperiodic and  chaotic
oscillations.

The experimental results along with their theoretical
counterparts are given in the form of a table for various
bifurcations. The values of dimensionless flow velocities
and frequencies are accurate to within +0.05. It is also
helpful to mention that, for quasiperiodic motions, the two
fundamental frequencies have been chosen in a consistent
manner in both the theoretical and experimental PSDs.

Experimental results showed that planar flutter
involving only the 7 motion developed at u = 5.4 with
frequency f = 2.9. As the flow rate was increased, the
amplitude of flutter increased and the oscillation became
quasiperiodic at u = 9.9, with fundamental frequencies f; =
0.75 and f, = 2.11. Increasing the flow velocity a little, an
amplitude reduction occurred at u = 10 with f = 5.9
accompanied by #z-motion flutter. The pipe ultimately
developed to chaotic-like? motion at u = 10.5, with a
dominant periodic component of f = 6.1. Before the
amplitude reduction, the travelling-wave flutter was
mainly associated with the second beam-mode travelling-
wave component, and after that the third beam-mode.

As seen in Table 1, the experimental results are in
good agreement with the theoretical ones, not only
qualitatively but also quantitatively.

Other theoretical and experimental results, e.g. for 6
= 45° are available, displaying similarly good agreement
between the two.

CONCLUSIONS

In this paper, the 3-D nonlinear dynamics of a cantilevered
pipe fitted with an end-mass and additionally supported by
an intra-span spring array has been investigated
theoretically and experimentally.

As the flow velocity was increased, a succession of
bifurcations occurred, with intervals of periodic,
quasiperiodic and chaotic oscillations, involving two- or
three-dimensional motions.

The same system was investigated experimentally and
agreement with the theoretical predictions was found to be
good. Thus, the theoretical model has been broadly
validated.

2 There is a strong periodic component plus a small chaotic component.
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TABLE 1

FLOW VELOCITIES AND FREQUENCIES OF
BIFURCATION POINTS FOR

THE SYSTEM WITH &=0.2, = 0° AND "= 0.1:
THEORY VERSUS EXPERIMENT

Values of u Values of f2

Theory  Experiment Theory  Experiment

Planar 5.6 5.4 2.93 29
flutter

First 0.64 0.75
quasiperiodic 9.2 9.9 and and
motion (3D) 2.33 2.11

First planar

oscillation

after

the

amplitude 9.4 10 6.7 5.9
reduction

Chaos

(chaotic

in theory and
chaotic-like

in 10.2
experiment)

10.5 A
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ABSTRACT

The two-dimensional motion of a slender elastic
fluid-carrying tube is considered. The tube is clamped
at the upper end, at its lower end a point mass is fixed,
and at some intermediate position two springs support the
tube in transversal direction. Adopting model equations
for the tube-liquid system from previous works, the loss
of stability of the trivial position of the tube is investi-
gated. While a linear stability analysis indicates several
possibilities of stability losses, special attention isdpa
to the Hopf-Hopf (coupled Flutter) instability where the
occurence of g1 : 3) internal resonance is detected for
distinct parameter values. In a non-linear analysis the
post-bifurcation behaviour is investigated for the case of
the (1 : 3) resonance. For limiting cases, the dynam-
ics of the tube is shown to be described by Duffing’s FIGURE 1: PROBLEM SKETCH: THE FLUID CARRY-
and by Mathieu’s equation, respectively, associated with ING TUBE.
(quasi)periodic motions of the tube.

INTRODUCTION

Motivated by the article [1], we consider a slender
elastic tube according to Fig.1, which is clamped at the
upper end and has a point massfixed to its lower

damping.g denotes the gravity accelleration vector.
We adopt the model equations for the tube system from
the literature, see [2—4]. Witmr and me denoting the
. . . . masses per unit length of the tube and the fluid, respec-
ends=I. Only two-dimensional motions are considered, . . .

tively, andEJ denoting the flexural rigidity of the tube,

whereu andz denote the horizontal and the vertical dis- . . . .
. the model equations may be non-dimensionalized accord-
placement, respectively, of a tube element. The center- .

line of the tube is assumed to be inextensible, and the ing to the following change of variables and definitions of

fluid being carried has a constant relative velotityel- parameters:
ative to the tube tangent to the centerline. Two springs
with constantg are fixed to the tube at the positise-1&
(with 0 < & < 1) and exert forces only in horizontal direc- s EJ  t u
tion. The material of the tube obeys a Kelvin-Voigt mate- S—y, to momeiz Y7 1)
rial law [2], where the coefficierdr describes the internal 3 . o1
a— (M IE 12 c— Ec, (2)

*Address all correspondence to this author.
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LINEAR STABILITY ANALYSIS

Performing a linear stability analysis of the straight
downhanging (trivial) equilibrium position of the tube
(u= 0, u=0) is achieved by quasistatically increasing
one of the distinct parameters with all the other pa-

The dimension-free governing equations then read in the rameters held fixed, until (at least) one real part of an

standard form of a dynamical system:

W:(W]_,Wz):(u7u), A :(p7r7a7f)7 (5)

W= AA)W-gW,A), A(/\):(_OC_18>, (6)

eigenvalue ofA will become zero, in case of which the
trivial position becomes unstable. Dependent on the pa-
rameter ranges, the following cases may be encountered
(Jc denotes the critical submatrix of the Jordan form of
A):

(1) Static (steady-state) bifurcation: simple zero eigen-

with the differential operatorB andC given by value ofA

Cwy =W, +p"W] — V[(1+T —s)wj]’, @) Je=(0) (13)
Bwo — awl’ + 2,/Bpw,.  (8)

(2) Hopf bifurcation: purely imaginary eigenvalugsw
Here, primes denote partial derivatives with respec to of A

The vectorg contains the non-linear part of the equations

of motion, and the parameters collected in the vedtor 0 —w
are the distinguished parameters of the problem. The Je= <w 0 ) (14)
deflectionz then follows with eq.(5) from the kinematic
boundary condition (3) Takens-Bogdanov bifurcation: double zero eigen-
value ofA
(U)?+(2)?=1, ©)
Jo= (O 1> (15)
which represents the inextensibility constraint. It skloul ¢ 00

be noted that neither the friction force between the tube

an the fluid enters egs.(5) and (6) as it is an inner force of (4) Hopf-Hopf bifurcation coupling: two pairs of purely
the system, nor does the fluid pressure, which gives rise imaginary eigenvaluesicy, +iw, of A

to a force on the tube element only in axial direction that

can be eliminated by using D’Alembert’s principle. The 0 —w

supplementary boundary and intermediate conditions in w O

linearized form are 0 —wp
w 0

0: wp=w;=0, (10)
s=&: W ({+)+aws/(§+)—
W' (&) —aws'(§—) = —ewy(§),  (11)
s=1: W/ +awy =T (yw,+wy),
W) +aws =0, (12)

Although more degenerate cases of stability loss may be
of interest (cf. [5], [3]), we will focus on case (4) in the
present study.

Solving the equation of motions (6) for the different cases
(1)-(4) leads to a three-point boundary value-inverse
eigenvalue problem of a system of four 1st-order ordinary
The conditions (10)-(12) represent the clamping at the up- differential equations, which was solved numerically us-
per end of the tube, the intermediate force jumping due to ing the code BOUNDSCO [6] and a homotopy method
the elastic support, the force due to the fixed point mass [7]. The numerical values for the parameters were taken
and the zero bending moment at the free end of the tube, from measurements of [1]:

respectively.

The equations of motion (6) as well as the boundary con- E =2558 N/m?, J =0,290 cnf, (17)
ditions (10)-(12) possessZa symmetry which represents | 44,3 cm me —0,0320 kg'm (18)
the symmetry of the system with respect to reflections at ’ ’ ’

the vertical axis through the origin. mr =0,189 kg/m, g=9,81kg/ms’ (19)
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FIGURE 2: STABILITY DIAGRAM. FIXED PARAM-
ETER VALUES & = 0.78 AND a = 2 x 10°3. BLUE
LINE: STATIC INSTABILITY (CASE (1), EQ.(13)),
BLACK AND RED LINE: HOPF INSTABILITY (CASE

(2), EQ.(14)).

FIGURE 3: STABILITY DIAGRAM SHOWING HOPF-
HOPF INSTABILITY COUPLING (RED LINE). FIXED
PARAMETER VALUESE =0.78 ANDa =2 x 1073

p=3595,I =4891

10

o N A | R
In comparing with results in [1], it should be noted that no 1: 3resonance / } /,/
material damping has been included in [1], in contrast to 8 gf/
the present study. This is of no concern for the instability 7 TS S
boundaries with respect to steady-state bifurcations, bubéw 6 f/?/ 7 g /
the Hopf instability boundaries may be influenced appre-%, 5 go;/g/g J
ciably by the inclusion of material damping. 7>//$/§ /\
Figure 2 shows the resulting stability boundaries with N SIS
respect to the static and to the Hopf instability for the pa- 3 [ fa= .002,570 78
rameter values indicated. While all the other parameters 2
are fixed, Fig.2 shows the critical values @fin depen- 1 T/ // / /
dence on the value @ As can be observed, for certain 0 >0 100 150 200 250 300

parameter constellations the coupled cases of a Takens-

Bogdanov instability (case (3), eq.(15)), and of a Hopf- FIGURE 4: SQUARE OF THE FREQUENCY RATIO

Hopf instability (case (4), eq.(16) occur. The latter case ALONG HOPF-HOPF STABILITY COUPLINGS FOR

is associated with a point at which the stability curve in- DIFFERENT BUT FIXED PARAMETER VALUES AS

tersects with itself (“loop”), leading to an instability thi INDICATED.

two different eigenfrequencies; and w, of the system.

Such cases are of interest with respect to the dynamics,

since if the two frequencies are multiples of each other, a beneath lower values &f no Hopf-Hopf couplings exist.

so called internal resonance will occur, which leads to a Figure 4 shows the squared fraction of the frequen-

different post-bifurcation behaviour compared to the non- ciesw; andw; as a function ot along Hopf-Hopf insta-

resonant case, as we will show later in the non-linear anal- bility boundaries for the indicated parameter values held

ysis of the problem in the next section. fixed. The red line in Fig.4 corresponds to the red line in
In Fig.3 the two black curves represent the instability Fig.3, where the red crossed point again marks the thresh-

boundaries with respect to a Hopf-instability for two dif- old for the existence of the Hopf-Hopf coupling. The

ferent values of the parameter Now letting the param- black and blue curves correspond to different values of

eterl" vary (along withp andc), the red line shows the  the same parameters held fixed. At that threshold, the

points at which the Hopf-instability curves intersect with two eigenfrequencieay and w, merge for all the cases.

themselves, starting (arbitrarily) from the point marked As can be observed, the variation of the frequency frac-

by the black cross and terminating in the point marked tion depends moderately on the paramétéut strongly

by the red cross. The red crossed point is the threshold on the parametear.
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Furthermore, the existence of éh: 3) internal resonance
for all the cases can be observed. The distinct param-
eter values forp andl™ on the occurrence of afl : 3)
internal resonance are indicated for the red curve. This
low-order resonance is of specific interest because it is
the lowest order resonance leading to a different (more
complex) post-bifurcation behavior in case of a stability
loss with respect to Hopf instabilities, as we will explain
in the next section.

NON-LINEAR STABILITY ANALYSIS
Dimensional Reduction and Bifurcation Equations

To gain insight into the dynamics of the tube-liquid
system in case of stability loss with respect to a Hopf
(flutter) instability and the couplings therein, the tech-
niques of dimensional reduction and the transformation
to normal form is applied, see [3, 8]. By considering only
the critical submatrixJ. of A, a near-identity but non-
linear transformation on the variables is applied in a way
such that as many of the (lowest order) non-linear terms
can be eliminated. The resulting bifurcation equations
still contain the complete dynamics of the system. This
procedure is standard for the Hopf and Hopf-Hopf insta-
bility and can be found, e.g., in [3, 8]. In case of a simple
Hopf bifurcation, the dimension of the critical submatrix
is dim(J¢) = 2 2, and the reduction process leads to two
bifurcation equations, which can be summarized in one
equation in complex notation € C

2=MNiw+AzPa+03) (20)

Here, all quadratic terms and all cubic terms exept for the
one retained in eq.(20) have been eliminated. Higher or-
der non-linearities, which are aﬁ”(zi’) in this case, will

be omitted. This is justified as long @g will not be-
come zero. The paramet@rintroduced in eq.(20) is a

TABLE 1: RESONANCE CONDITION FORn= 2

eq.(23) m mp mg y
2 1 0 0 ‘Z]_|221
1 0 1 1 [z
0 1 1 0 212
eq.-(24) m m mg my
1 1 1 0 ‘Z]_|222
0 0 2 1 ‘22|222
2 0 0 0 2

order non-linear terms, which is a consequence of the re-
duction proecess in which tt#e, symmetry is maintained

in the bifurcation equations.

For the case of a Hopf-Hopf interaction bifurcation in
presence of low-order resonances, the normal form can
be calculated with the aid of the so called resonance con-
dition. If a (e : wp) = (1 : m)-resonance with given fre-
guenciesw, and w;, of integer fractionm is present, the
resonance condition reads (see [3])

my (i) 4+ mp(—iwy)+

Mg(imawp) +ma(—imw) =i (23)
my (i) 4+ mp(—iwy)+

Mg(imawy) +my(—imon) =imaw;. (24)

If this condition can be fulfilled with certain integens,

mp, Mg and my, the corresponding monomial non-linear

term cannot be eliminated by the reduction process and

therfore must be retained in the bifurcation equations.
Table 1 gives an overview of the smallest integers

fulfilling the resonance conditions egs.(23) and (23) for

the case of 41 : 2) internal resonance, i.en= 2. The

last column indicates the monomials which cannot be

eliminated. As can be seen, some quadratic terms coul

unfolding parameter needed to investigate the different not be eliminated, but such terms are not present in the
cases of post-bifurcation behaviour in case of loss of sta- critical equations, and some cubic terms must be retained.
bility. Since the co-dimension of this problem is one, only These cubic terms are already present in the non-resonant
one unfolding parameter is involved. case, cf. egs. (21) and (22). Hence, the dynamics (and
In case of a Hopf-Hopf interaction bifurcation without the bifurcation equations) remain unchanged with respect
low-order internal resonances, didg) = 4 x 4 and the to the non-linear behaviour in the case dfla 2) internal
bifurcation equations are resonance compared to the non-resonant case.

This is different in the case of @ : 3) internal res-
onance. Table 2 shows the resonance condition for that
case, i.em= 3. Two new cubic terms, highlighted in red
in Tab.2, have to be retained in the bifurcation equations
with z, z, € C and two unfolding parameters and L. compared to the non-resonant case. The3) resonance
Note that neiter eq.(20) nor egs.(21) and (22) contain even therefore is the lowest order internal resonance leading

n=NA+iw+AlznlP+ Azl )a+ 07, B), (21)
2= (U+im+Adzlf’ + AP+ 0, B), (22)

10
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TABLE 2: RESONANCE CONDITION FORn= 3

eq.(23) m m mg My
2 1 0 0 |Zl|221
1 0 1 1 |2z
0 2 1 0 Zp
eq.(24) m mp mg ny
1 1 1 0 |Zl|222
0 0 2 1 |22|222
3 0 0 0 Z

to a different post-bifurcation behaviour compared to the
non-resonant case.

The resulting bifurcation equations for a Hopf-Hopf inter-
action bifurcation in case of afl : 3) internal resonance
are

7= A tiw+Alz)P+ APz +A%n,  (25)
2= (H+3i0+i8+Adz|* + As|z) 22 + Aez;, (26)

where the additional terms compared to the non-resonant
case are highlighted in red.

Equations (25) and (26) can be conventiently rewritten in
polar co-ordinateg, = r;d? (i =1,2)

fl = (/\ + ReAlrf+ RGAzrg)rl—i-
Re[Age‘“?"l’l—‘l’Z)]rfrz,

F2 = (1 + ReAsr{+ReAsr5)ro +

Re[Aeei<3¢1—¢2>}ri’,

—5+ (3IMAL — ImAY)r +

(3IMA; — ImAs)r3 +

3Im[Age ' (3P1=02)]r r,

|m[A6ei(3¢1*¢2)}r%r2*1’

(27)

(28)

(301 —¢2)

(29)

where again the additional terms compared to the non-
resonant case are highlighted in red. The two equations
resulting for the angleg, and ¢, have been added up to
one eq.(29) for the resonance an(¢, — ¢,). An addi-
tional unfolding parametead has been added in eq.(29) to
account for the “detuning” of the resonance angle, yield-
ing a co-dimension three problem. The values for the
complex coefficientsh; (i = 1,...,6) have to be com-
puted numerically. This was done by discretizing the
tube system into 16 rigid parts coupled to each other by
rotational springs and dampers and solving the result-
ing algebraic problem by MATHEMATICA. The values
for the parameters were taken &s= 0.886, " = 0.099,

TABLE 3: COMPLEX COEFFICIENTS (i =1,...,6)

IN THE BIFURCATION EQUATIONS (27)-(29) IN
CASE OF A(1: 3) INTERNAL RESONANCE

Aq 14.44-22.7i
Ao 0.155+0.184
Az —2.23+2.67
A4 330—-219
As —0.00127+ —0.00122
As 25.8—-429i
2
@8
| A=-01 ié !
[7)]
[ 1
241 ol
@O __ -
S LR
e 8
0 /o sjtable 0 unstable
-0.3 -02 -01 0 0.1
u
FIGURE 5. BIFURCATIONS OF r; FOR FIXED
VALUE OF A

B =0.146,a = 0.018 andy = 25.3, where the resulting
Hopf-Hopf interaction occurs for = 121 andp = 9.03.
Table3 shows the results for the complex coefficieits
(i=1,...,6) inegs.(27)-(29).

Unfolding and Bifurcation Diagrams - The Non-
resonant Case

We first turn to the discussion of the non-resonant
case, i.e. the case where all the terms in red in egs.(27)-
(29) are not present. In that case the egs.(27) and (28)
decouple from (29) to the order considered. This means
that the solutions for; andr, can be calculated inde-
pendently of the dynamics of the phase angles. Accord-
ing to eq.(29), the phase velocities afe= w; = const
and ¢, = w, = const to leading order. Since the re-
transformation to physical co-ordinates involves only ro-
tations in variable space, one can immediately conclude
that in case of stability loss with respect to a coupled
Hopf-Hopf instability without low-order resonances, the
tube will perform a quasi-periodic motion of two super-
imposed eigenfrequencies; and w,, with amplitudes
given byrq andr».

Figure 5 shows the bifurcations of resulting from
egs.(27) and (28) for the plade= —0.1. From the bifur-
cation equations follows that up to four equilibrium points
of r; andr, exist, dependent on the values ofand u.

11
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As can be seen in Fig. 5, the stable trivial equilibrium un-

dergoes two subcritical pitchfork bifurcations, whereyonl H &5
the second bifurcation at = 0 leads to stable non-trivial
equilibria, whereas all other branches are unstable. The \
stability of the equilibria can be calculated from eqs.(27) ©\'
and (28) by linearizing the equations around the equilib- _-03

rium and calculating the corresponding eigenvalues. An

analogous diagram can be obtained rfgrwhich shows

two supercritical pitchfork bifurcations with non-trivia

but all unstable branches for the equilibriarof

Figure 6 shows the stability diagram resulting from an :70.1
unfolding of the bifurcation equations (27) and (28) for

the non-resonant case, along with the corrensponding so-

lutions in phase spadgs,rz). The two solid lines sepa-  °° 05
rate regions of different numbers of equilibria @fand

ro (note that for visibility reasons the inclination of one
of the lines has been enlarged by a factor of 100). The
trivial equilibriumry =r, = 0 is present in every region, : ®
but it is stable only in the lower left quadrant. The grey
shaded area indicates the region where non-trivial values,
for the equilibria of bothr; andr, exist. The dashed

line shows a representative loading path, corresponding . 20

to quasistatically increasing one (or a linear combination 10 /
of two) distinguished parameters, e.g. In region(D), ; = L, o - =
two equilibria exist, from which only the trivial one is sta- @ ' ®)

ble. Entering regior{2), an additional third but unstable

equilibrium appears. Proceeding to regi@ (which is 0 =

very small), four equilibria are present, where the trivial |, ’ \\\\:’////
equilibrium becomes a saddle point, and the only stable,, 05

equilibrium is the one withr; = 0,r, # 0), as was al- |,

ready concluded from Fig.5. Proceeding further to region . - .
@), only three equilibria are present, all of which are un- @ ' @ '

stable. The other phase portraits are self-explaining.

Since there is only one stable non-trivial equilibrium pos-
sible (the one in regiorfd), the tube performs quasi- FIGURE 6. BIFURCATION DIAGRAM FOR THE

periodic oscillations with almost constant frequerwy NON-RESONANT CASE WITH PLATES SHOWING
and almost constant amp“tud@”’] that case. SOLUTIONS IN PHASE SPACE. THE DASEHD LINE
IS A REPRESENTATIVE LOADING PATH.

@ ® W®

+0.3

ro 9

Unfolding in the Case of an (1: 3) Internal Resonance

As can be seen from eqs.(27)-(29) with the terms in ary /\ Plugging into egs.(25) and (25) an ansatz
red now included, the general solutions for the equilibria
and the corresponding unfolding is much more complex,
since the equations do not decouple any more. Never-
theless, one can conclude that the equilibria wittare 3iQt+¢
identical to the equilibria in the non-resonant case with 2 =1r2€ (31)

Az = Ag = 0.

In investigating the non-trivial equilibrium pointr; #

0,r # 0), one can consider two limiting cases: First, we with Q = w+ ImAlrf one observes that ~ const, as
consider the limiting case ob < r1, which corresponds  eq.(25) reduces to a decoupled equation as in the non-
to the grey shaded area of Fig.6 close to the lower bound- resonant case. The corresponding equations f@nd

) = rleiQt, (30)

12
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FIGURE 7: BIFURCATIONS OFr; IN CASE OF AN
(1:3) INTERNAL RESONANCE IN THE LIMITING
CASEr; «ry.

the phase anglé can be written as

f2 = vrp+ ReAsr3 + agcosBs— 9)r;,  (32)

¢ = y+ImAsr3 + aesin(Bs — ¢)rir, ", (33)

with the shifted unfolding parameters
V = U+ ReArs, (34)
y = 8+ (ImA; — 3ImA )r? (35)

CONCLUSIONS

In investigating the stability behaviour of the liquid-
tube system we have shown that Hopf-Hopf bifurcation
interactions and the occurrence of low order internal res-
onances are present for distinct parameter values. The
material damping of the tube, described by the parame-
ter a, exhibits a strong influence on that behaviour. The
(1:3) internal resonance is the lowest order resonance
causing additional terms in the bifurcation equations to
third order, leading to a much more complex dynamics
of the tube compared to the non-resonant case. The mo-
tion of the tube in case of afl : 3) internal resonance
was shown to be governed by a Duffing’s and by a non-
linear Mathieu’s equation in limiting cases, correspond-
ing to quasi-periodic oscillations of the tube.
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FLOW-INDUCED OSCILLATIONS OF A CANTILEVERED PIPE CONVEYING
FLUID WITH A BASE EXCITATION

Gary Han Chang
Fluid-Structure Interactions Laboratory
Department of Mechanical and Industrial
Engineering
University of Massachusetts,
Ambherst, MA 01003
Email: gary@engin.umass.edu

ABSTRACT

A plain cantilevered pipe conveying fluid loses its
stability by a Hopf bifurcation, leading to either planar or
non-planar flutter for flow velocities beyond the critical
flow velocity for Hopf bifurcation. If a mass is attached to
the end of the pipe (a so-called added mass), the resulting
dynamics becomes much richer, showing 2-D and 3-D
quasi-periodic and chaotic oscillations at high flow
velocities. In this work, we consider a cantilevered pipe
subjected to a periodic small-amplitude base excitation,
and show that by selecting the right frequency and
amplitude for an external base excitation, the non-planar
periodic and quasiperiodic oscillations of the pipe can be
reduced to planar ones.

INTRODUCTION

Pipes conveying fluid have been studied
extensionally. Although the system is a rather simple one,
with slight changes, it exhibits various complicated
dynamical behavior, including quasi-periodic and chaotic
motions. The initial models used to predict the behavior of
a pipe conveying fluid were 2D linear models, which
showed that the system would lose its original stability at
a critical flow velocity, leading to periodic oscillations.
The large amplitude as well as 3D oscillations observed in
the experiments (Lundgren et al., 1979) initiated studies
toward nonlinear and 3D models to predict the pipe’s
motion.

Bajaj and Sethna (1984) derived a nonlinear model
for a plain pipe (i.e., with no additional mass or spring)
conveying fluid. They used the centre manifold and
normal form techniques and found that a horizontal pipe
loses its original stability through a Hopf bifurcation and
develops either 2-D (planar) or 3-D (orbital or rotary)
flutter, depending on a mass parameter 5 (defined later, in
Equation 3).

Yahya Modarres-Sadeghi
Fluid-Structure Interactions Laboratory
Department of Mechanical and Industrial
Engineering
University of Massachusetts,
Ambherst, MA 01003
Email: modarres@engin.umass.edu

asin(f.z) 1 y

Fig. 1 A cantilevered pipe conveying fluid subjected to a
periodic base excitation.

An additional mass or spring attached to the pipe can
either stabilize or destabilize the system, depending on the
system parameters and location of the additional mass or
spring (Paidoussis, 1998). Copeland and Moon (1992)
studied the three dimensional dynamics of a cantilevered
pipe with an end-mass, and observed various planar and
non-planar  periodic, quasi-periodic and chaotic
oscillations.

Wadham-Gagnon et al. (2007) derived a 3-D
nonlinear model for a pipe conveying fluid with an
additional mass and spring attached to it. They (Paidoussis
et al., 2007) showed that an additional spring would lead
to 2-D or 3-D periodic, quasi-periodic and chaotic
oscillations after the initial planar flutter. The type of the
motion depends on the spring array configuration, point of
attachment and spring stiffness. In some configurations,
the system loses stability by divergence, followed by
oscillations in the plane of divergence or perpendicular to
it, where these oscillations can be periodic, quasi-periodic
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or chaotic. Using this model, Modarres-Sadeghi et al.
(2007) studied the 3D oscillations of a pipe conveying
fluid with an end-mass, and Ghayesh et al. (2011) studied
the case with both an end-mass and an added spring.
Again, using the same model, Modarres-Sadeghi et al.
(2008) showed that a plain pipe oscillates mainly in a
plane, for small mass parameters, f (except for =0.2) and
in a 3D circular way for larger values of £ (0.7<$<0.9)
where for the intermediate £ values the oscillations switch
between 2-D and 3-D as the flow velocity increases.

Furuya et al. (2010) studied the stability of a
cantilevered pipe conveying fluid with an end-mass in the
case of a horizontal excitation at the upper end, for a fluid
velocity slightly over the critical value. By solving
nonlinear equations of motion with base excitation
numerically, they showed that the non-planar vibrations
are reduced to planar vibrations when the excitation
frequency is nearly equal to the frequency of the original
flow-induced pipe vibrations.

In this work, we study the influence of base excitation
on the oscillations of a cantilevered pipe conveying fluid.
We examine the influence of a base excitation with
various frequencies and amplitudes on the stability of a
cantilevered pipe conveying fluid, for cases with or
without an end-mass.

THE EQUATIONS OF MOTION AND THE METHOD
OF SOLUTION

Three-dimensional equations of motion for a
cantilevered pipe conveying fluid were derived by
Wadham-Gagnon et al. (2007) for a pipe with extra mass
added at the tip and springs attached somewhere along the
length of the pipe. We modify these equations slightly in
our model by introducing an external force acting at the
base of the pipe, in a way similar to what Furuya et al.
(2010) and Nayfeh and Pai (2002) have done.

The final form of the dimensionless equations of
motion in the y-direction will become

0"+ [+ TS - +u'n"+ 20 B’

+nn"+dn'n"n"+n " +n' ¢
W' ey

W+ TSE-D]1[ G2+ i+ £ P+ ¢ E)dg
—77"I[1+F5(§—1)]](77'2+f7‘f7"+('2+§‘5')d§d§
L4 TSE-Dlp= " [ [+ T8 -Dlde
1,1,
+y(zn"+=-n'¢")
2 2

3, 1, )
—F(Eﬂ' 77"+E§' ?7"+’7'§'§")L [1+T6(5-D]dS
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+U2[77'277"+77'§'é""—77".[(77'77"+§'§")d§}

+2U\/E{77'2 77'+77'C'C"—n"f(n'ﬁ?é“'é')dé}
=af *sin ft, @
with the boundary conditions of

n(0) = 7'(0) = n"(1) =0,
¢0)=4"(0)=¢"(1)=¢"(M) =0, )
n"(1) = af * sin(wr),

where,
S "
§:_1 77:_1
L L
1/2
I v (M] LU
=, U=| — ,
El
5 M (M +m)l’
T M+m’ T EI ’

fe:a)\/(m+ M)I* / (EI), (3)

in which » and ¢ are dimensionless transverse
displacements in the y- and z- directions, respectively; & is
the dimensionless distance along the pipe; u is the
dimensionless flow velocity; g is a mass parameter; y is a
dimensionless gravity parameter; z is a dimensionless
time; w and v are the transverse displacements in the y-
and z-directions, respectively; a and f, are the
dimensionless amplitude and frequency of base excitation,
respectively; s is the distance along the pipe, measured
from the clamped end; L is the length of the pipe, D its
diameter and El its flexural rigidity; t is the time; p is the
density of the fluid; m is the mass per unit length of the
pipe; M is the mass per unit length of the fluid; U is the
flow velocity; 67 is the amplitude of the base excitation
and w its frequency.

The equation in the z-direction is obtained by
exchanging ¢ and 7 and removing the excitation force on
the right hand side.

In order to analyze the equations of motion
numerically, the nonlinear coupled partial differential
equations are discretized by Galerkin’s technique and
eigenmodes of a cantilevered beam are used as the base
functions. The resulting set of ordinary differential
equations is solved using Houbolt’s finite difference
method (Semler et al., 1996). At least 6 modes are used in

a=0oY/L,
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each direction in these simulations, while higher modes
are occasionally used to test the convergence of the
results.

A THREE DIMENSIONAL PLAIN PIPE WITH BASE
EXCITATION

For plain pipes, observing planar or non-planar
oscillations depends on the mass parameter and flow
velocity. The non-planar motions are usually observed at
larger mass parameters (8 > 0.5), while planar oscillations
are more common for smaller mass parameters (4 < 0.5)
(Modarres-Sadeghi et al., 2008). In this section, we study
the flow-induced oscillations of a 3D plain pipe with base
excitation. In particular we examine the possibility of
reducing the observed non-planar oscillations to planar
ones by applying a low-amplitude low-frequency base
excitation in the direction of the desired planar motion.
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Fig. 2 Tip displacement and PSD plots for the system with
B =0.7, u=14.0 (a,b) without base excitation, (c,d) with a
base excitation of a = 0.01 and f.= 8.0, (e,f) f.= 7.4, and (g,h)
fe=7.0.

Figure 2(a,b) shows that a plain cantilevered pipe
with a mass parameter of £ = 0.7 at a dimensionless flow
velocity of u=14 and with no base excitation undergoes
three-dimensional  circular  oscillations  with a

dimensionless frequency of f, = 8.0 and a dimensionless
amplitude of #y = {u=0.16.

If the base is excited periodically in the y-direction
with a dimensionless frequency of excitation of f, = 8.0 (a
frequency equal to the frequency of oscillations with no
base excitation) and a dimensionless amplitude of
excitation of a=0.01, the tip of the pipe undergoes
elliptical motion, with a dimensionless frequency of
f = 8.0. The amplitude of oscillations increases in the y-
direction, the same direction as the direction of the
externally applied force, and reduces in the perpendicular
direction: z-direction (Figure 2c,d).

When the frequency of base excitation is decreased
slightly, e.g., fo = 7.4 and with the same amplitude of base
excitation, the free end undergoes a planar motion at a
dimensionless frequency of f = 7.8, with an amplitude of
oscillations larger than the original amplitude of
oscillations with no base excitation (Figure 2e,f).

By further decreasing the frequency of base
excitation to f, = 7.0 at the same amplitude of excitation, a
=0.01, the planar motion is lost and the tip undergoes
three-dimensional quasi-periodic motion (Figure 2g,h). A
similar trend was observed for the other flow velocities.

In general, for a given amplitude of excitation and at
a fixed flow velocity, if the pipe is excited at the
frequency of its original oscillations (with no base
excitation), f, = fo, an elliptical motion is observed. To
observe a planar motion, the frequency of excitation
should be lower than f;, but if it is much lower than fo,
quasi-periodic motion is observed. Quasiperiodic motion
is also observed for the frequencies of excitation larger
than f, and between the frequency range for the elliptical
and planar motion.

Non-

. periodic Threshold
Threshold motion amplitude
amplitude A

;fo
fv

Fig. 3 A schematic of different kinds of motion observed for a
fluid-conveying pipe with base excitation and their
dependence on the frequency and amplitude of the base
excitation.

Figure 3 shows a schematic of various kinds of

motion that are observed when a plain pipe is subjected to
a base excitation. The resulting planar or non-planar
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oscillations depend not only on the frequency of
excitation, but also on the amplitude of excitation. When
the base is excited with a large-amplitude excitation, the
planar motion is observed over a wide range of non-
dimensional excitation frequencies. For the smaller
excitation amplitude, both planar motion and elliptical
motion are observed, while the elliptical motion is
observed for the excitation frequency f, = f,. For
excitation amplitudes smaller than a threshold amplitude,
no planar motion is observed.

Generally, in order to obtain planar motion over a
wider range of excitation frequencies, larger amplitude of
excitation should be used. For larger amplitudes of
excitation, quasi-periodic oscillation is not observed
between the planar and elliptical motions. The promising
fact is that the amplitude of excitation needed to observe
the planar motion is not very large.

THE INFLUENCE OF BASE EXCITATION ON
DYNAMICS OF A PIPE WITH AN END-MASS

So far we have observed that one can reduce the three-
dimensional periodic oscillations of a pipe conveying
fluid to two-dimensional ones by applying a proper base
excitation. In this section we extend this analysis to the
cases with quasiperiodic oscillations in the original pipe
with no base excitation to see if such oscillations too can
become two-dimensional by applying a proper base
excitation.

(@)

(e)

Fig. 4 Tip displacement and spatial plots for a pipe with an
end-mass with #=0.2, I=0.1 and u = 8.0, (a,b) without base
excitation, (c,d) with a base excitation of a =0.02, f,=2.5,
and (e,f) f.=5.0.
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A pipe conveying fluid with an end-mass loses its
original stability by a Hopf bifurcation leading to limit
cycle oscillations, as the flow velocity increases. At higher
flow velocities, the pipe can undergo period-doubling or
torus instability, leading to period-2 or quasiperiodic
oscillations, eventually leading to chaos (Modarres-
Sadeghi et al., 2007). In this section, we study the
influence of a base excitation on the resulting oscillations
of a pipe with an end-mass.

A pipe with a mass parameter of $=0.2 and an end-
mass parameter of /7 = 0.1 (where /=m¢J/(m+M)L is a
dimensionless end-mass parameter) loses its stability and
undergoes 2-dimensional flutter at u=5.0. At u=7.0, the
system’s limit cycle oscillations become unstable through
a torus, leading to quasiperiodic oscillations at higher
velocities. Figure 4(a,b) shows the tip displacement and
spatial plots of the quasiperiodic oscillations of this
system at u=8, where there is no external excitation. The
dimensionless  fundamental  frequencies of  this
quasiperiodic motion can be chosen as f; = 1.07 and f, =
2.73.

The base is excited with a magnitude of a =0.02 and a
varying frequency. This amplitude is chosen because for
smaller amplitudes (including a=0.01) no planar motion
was observed. If the base is excited at a dimensionless
frequency of 2.5 (Figure 4c,d) a planar oscillation in the
plane of excitation is observed. The oscillations are still
quasi-periodic  with  the fundamental frequencies
comparable with those of the original quasi-periodic
oscillations, but they stay in a plane.

A base excitation at a higher dimensionless frequency,
f=5, (Figure 4 e,f) results in pure periodic oscillations of
the third mode at a dimensional frequency of 5, resulting
in a decrease in the magnitude of the tip displacement.
These oscillations too stay in the plane of the base
excitation.

Overall, in two ranges of excitation frequencies (f, =
2.5-2.55 and f. = 5-5.5), the pipe undergoes planar motion
(i.e. z=0). For the planar motions at the lower frequency
range (f, = 2.5 — 2.55), the amplitude of oscillations in the
direction of the external force is larger than those for the
original oscillations. In this range, the second mode of the
pipe is excited. With the frequency of base excitation in
the higher range, (f, = 5-5.5), the 3" mode of the pipe is
excited, which naturally results in low-amplitude
oscillations of the tip.

CONCLUSIONS

We study the influence of base excitation on the
oscillations of a cantilevered pipe conveying fluid. We
show that the non-planar oscillations of a pipe conveying
fluid can be reduced to planar oscillations, when the pipe
is subjected to a base excitation with a proper frequency
and with relatively small amplitude. In general, the motion
of the tip of a plain pipe conveying fluid with a base
excitation can be classified as (i) planar periodic, (ii)
elliptical periodic or (iii) non-planar quasiperiodic motion.
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The observed motion depends on the frequency and
amplitude of the base excitation.

Typically, if the pipe is excited with a frequency equal
to the frequency of its original oscillations, the resulting
motion will be an elliptical one. In order to force the non-
planar motion into a planar one in the plane of the base
excitation, the frequency of excitation must be slightly
smaller than the frequency of original oscillation.

We have also studies the case of a cantilevered pipe
with an added mass at the tip. With no base excitation, the
pipe undergoes 3D quasi-periodic and chaotic oscillations.
When we apply a small-amplitude base excitation at a
frequency slightly smaller than the frequency of the
original self-excited oscillations, the 3D quasiperiodic
oscillations are reduced to 2D quasi-periodic oscillations.
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ABSTRACT

This paper is devoted to the experimental analysis of
the aeroacoustics of free and impinging jets. The typical
screech tones which characterize the acoustics of the free
jets are measured and the results are compared with the
data already published in the literature. The investigation
is then focused on the effect on the screech tones of the
impingement of the jet over a plate perpendicular to its
axis. In particular the effect of the main geometrical and
physical parameters is considered and discussed.

NOMENCLATURE

d nozzle exit diameter

D plate diameter

f frequency

h nozzle-to-plate distance
po stagnation pressure

pq ambient pressure

St Strouhal number

u jet velocity

NPR nozzle pressure ratio
OASPL overall sound pressure level

INTRODUCTION

The aeroacoustics of free and impinging jets is an in-
teresting and fundamental problem which received par-
ticular attention in the last decades. The phenomenon is
relevant for several applications and for the physical pro-
cesses which link the fluid dynamic field to the acous-
tic one. In many circumstances the noise of jets plays a
fundamental role as, for example, for the jet issuing by
rockets or by aeronautical engines. In these cases both

the free and the impinging configurations can be encoun-
tered. Electronic equipment cooling and paper drying
devices are additional cases where high-pressure jets of
gases are involved. These high-speed flows can develop
several undesirable effects, in particular significant acous-
tic emissions, aerodynamic and thermal loads, high heat
transfer coefficients, lift loss and surface erosion phenom-
ena [1-4].

As pointed out by several authors [5-9], when the
jet impinges on a surface the physical mechanism of the
noise generation is not yet completely understood. The
complex structure of the flow, characterized by the con-
temporary presence of subsonic and supersonic regions,
shock-wave oscillations and instabilities, regions of tur-
bulent shear and, eventually, a recirculation zone close
to the impingement region, makes difficult to give a co-
herent and satisfactory model of the problem. An accu-
rate review of the phenomena observed in experimental
supersonic impinging jets studied from 1961 to 2000 is
reported by Henderson [10].

More specifically, the acoustic properties of free and
impinging jets are characterized by the presence of peaks
at discrete frequencies, known as *“ screech” and “imping-
ing” tones, which can induce an increase of more than 10
dB over the average broadband level. Likely, these dis-
crete tones are due to a feedback mechanism [11-15] and
represent one of the main problems encountered in the
engineering applications. For an impinging jet in addi-
tion to these discrete tones, the broadband noise also be-
comes important, contributing to a significant increase of
the OASPL (OverAll Sound Pressure Level).

These peculiar aspects motivated the content of the
present paper which is devoted to an experimental evalu-
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ation of the aero-acoustic field of a jet. The main goal is
a better comprehension of the phenomenon by means of
an accurate experimental analysis. The work was carried
out in the laboratories of the Department of Mechanical
and Aerospace Engineering, located at the University of
Rome “La Sapienza”.

The study was organized as follow. The first step was
devoted to the characterization of the anechoic chamber
to test the quality of the acoustic insulation. A refer-
ence sound source calibrated both in intensity and fre-
quency was adopted to evaluate the response of the test
chamber to external noise sources and waves reflections.
The work then focused on the collection of data related to
the free jet behavior. In particular the acoustic measure-
ments were carried out to the double purpose of tuning the
experimental apparatus and observe the more referenced
physical situations of the aeroacoustics of the free jet. The
latter, in fact, has been extensively studied and provides
a rich database to compare with. Finally the interaction
of a jet and a surface was investigated. The research was
aimed at evaluating different aspects of the flow and the
acoustic field.

AEROACOUSTICS OF SUPERSONIC JETS

Under-expanded supersonic free jets produce noise
through three main mechanisms. A first contribution, the
turbulent mixing noise, is due to the large and fine scale
structures of the turbulent flow. Moreover a broadband
component and the discrete screech tones are present and
are related to the shock cells structure in the jet [16].

The intensity of each component is strongly depen-
dent on the observer position. In the downstream direc-
tion the most important component is the turbulent mix-
ing contribution [17] while the broadband noise and the
screech tones are the most significant upstream of the jet.
The principal direction of radiation of the first harmonic
of the screech tone is upstream of the nozzle exit at 90°
with respect to the jet flow axis [18]. In the far field the
measured frequency of the screech tone is almost constant
regardless of the observer direction [19].

After the pioneering contribution of Powell in 1953
[11, 12], the screech phenomenon has been studied by
several researchers and it is now recognized that these dis-
crete tones are generated by a feedback loop. As clearly
explained in [20, 21] the feedback loop is triggered by
the large coherent vortical structures of the jet which are
convected downstream and interact with the shock waves
at the edge of the shock cells. The interaction produces
strong acoustic waves that propagate upstream and excite
the thin shear layer near the nozzle lip producing instabil-
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ity waves. The instability waves propagate downstream
growing in amplitude and the interaction with the shock
cell structures produces the acoustic waves that travel up-
stream closing the feedback loop. The acoustic waves
form the outer part of the loop and propagate outside the
jet.

In presence of screech tones the jet exhibits differ-
ent oscillation modes that are dependent on the nozzle
geometry and the pressure ratio. For a supersonic circu-
lar jet Davies and Oldfield [22] found the four oscillation
modes namely, with the increasing the pressure ratio, ax-
isymmetric A1, axisymmetric A2, lateral B and helical C.
Furthermore Powell [23,24] found the lateral mode D at
higher pressure ratios.

When the jet impinges on a solid surface, as a flat
plate normal to its axis, the flow configuration becomes
more complex. Following [25,26] we can describe the
flow field in terms of three different regions

e an upstream free jet region where the plate effect is
almost negligible and where the behavior is like the
free jet;

e an impingement region where the interaction of the
jet with the solid surface changes the flow structure;

e a wall jet region with a radial flow close to the im-
pingement surface.

From this brief description it is clear the complexity
of the flow configuration.

For a given nozzle geometry, the main parameters
that characterize the flow and consequently the sound
emission are the nozzle pressure ratio NPR (ratio of the
stagnation pressure pg to the ambient pressure p,), the
nozzle-to-plate distance /4 and the plate size D.

In the literature two different flows have been ob-
served where a possible recirculating bubble can appear
in the impingement region. Up to now it is not clear
which conditions can lead to the presence of this stag-
nation bubble, as well as different mechanisms have been
proposed to justify its presence. More details about this
point can be found in the paper of Donaldson et al. [1],
Carling and Hunt [27], Kalghatgi and Hunt [28], Lam-
ont and Hunt [29], Alvi and Iyer [26] and Krothapalli et
al. [7].

From the acoustical point of view the presence of
the plate can induce additional discrete tones (“impinging
tones”) which can dominate the noise spectrum. Some
authors [7, 8, 10, 13-15, 26, 30-33] proposed a feedback
loop similar to that of the screech tones to explain the
origin of these tones. But as reported in more recent pa-
pers [8,9] a satisfactory theory is still lacking and the is-
sue is open.
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FIGURE 1: SKETCH OF THE EXPERIMENTAL SET-
UP.

On the basis of our results we can observe that, in ad-
dition to this discrete tones, the presence of a solid surface
lead to a significantly increase of the overall sound pres-
sure level. This feature is also reported by Krothapalli et
al. [7] who found an increase of about 8 dB of the overall
sound pressure level with respect to the free jet. They also
observed that the variation of the nozzle-to-plate distance
doesn’t produce a marked change of the OASPL.

EXPERIMENTAL SET-UP AND RESULTS

The acoustic measurements are obtained by a set of
8 free field 1/4 inch microphones type 3570, with a dy-
namic range of (4 —25000) Hz, a sound analyzer Pulse-
X3570 integrated with FFT and CPB analysis tools and
a Nexus 2690 amplifier. All the acoustic instruments are
produced by Briiel & Kjer.

The experimental apparatus consists of a cylindrical
stagnation ambient (44 cm length x 29 cm diameter) con-
nected to an high-pressure circuit and provided with a
pressure sensor and a seeding system. Fig. 1 shows a
sketch of the set-up.

The connection between the stagnation chamber and
the test chamber is made by a round nozzle, with diam-
eters d ranging from 0.4 to 1 cm. The test chamber (204
cm length x 40 cm diameter) is internally covered by ane-
choic materials and is provided of two windows for the
PIV measurements.

For the impinging jet configuration the test chamber
is provided with a circular plate downstream to the noz-
zle, equipped with the static pressure taps. Two plates
of diameters D = 15,25 cm were adopted. The nozzle-to-
plate distance /& was changed between i/d =210 while
the Mach number spans between 1.03 and 1.55. The jet
Mach number was changed by setting proper values of the
ratio between the pressure pg of the upstream stagnation
chamber and the pressure p, in the downstream ambient

(NPR = po/pa)-
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FIGURE 2: FREE JET. POWER SPECTRAL DENSITY
PSD AT DIFFERENT VALUES OF NPR. d = 1cm.

To complete the analysis when the plate is present, we
used a set of static pressure taps coupled to a scan-valve
system DSA3217 to measure the surface distribution of
the pressure.

We present now some preliminary experimental re-
sults obtained in the apparatus described above. First we
show the near field acoustic measurements for the free jet.
The noise was measured with a microphone located two
diameters upstream to the issuing jet and four diameters
far from the jet axis in the radial direction. The angle
between the microphone and the axis of the jet is 90°.

Fig. 2 reports an example of the power spectral den-
sity distribution at different values of NPR. It can be
clearly recognized the existence of one or more screech
tones. The main effect of the nozzle pressure ratio is to
change the average value of the sound power level and
the frequency and the number of the screech tones. In
particular as the NPR increases the discrete tones shift to-
ward lower frequencies. This effect was already observed
in previous papers [24,34,35] but the scenery is compli-
cated by the presence of multiple tones corresponding to
different oscillating modes.

This last point is confirmed in the Fig. 3 where the
distribution of the screech frequencies versus the nozzle
pressure ratio is shown. The picture compares our ex-
perimental results against the experimental data of Pow-
ell [23, 24] for the same nozzle exit diameter. Both the
dominant and secondary tones are reported and the agree-
ment of the results is very good. We recall that a tone
is called dominant when it corresponds to the maximum
sound pressure level, usually more than 10 dB with re-
spect to the mean value. At NPR = 2.36 it can be ob-
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FIGURE 3: FREE JET. SCREECH FREQUENCY DIS-
TRIBUTION AS FUNCTION OF NPR. d = 1cm.

served in our data the presence of the two screech fre-
quencies which, following the analysis of Powell, can be
classified as a dominant tone related to the axisymmetric
oscillation mode A2 and a secondary tone related to the
lateral oscillation mode b. We want to point out that the
satisfactory agreement with the data of Powell [23,24] is
a positive check of the quality of our experimental rig as
well as the measurement set-up.

The effect of the plate on the noise of the jet is shown
in the Fig.s 4 and 5 where a comparison of the power
spectral distributions of the free and the impinging jet is
shown. These initial experiments with the impinging jet
are aimed at evaluating the effect of the presence of the
plate on the screech tones.
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Fig. 4 refers to NPR = 2.9 at two values of the nozzle-
to-plate distance. As a general comment we note that, as
expected from the data reported in [7], the average level of
the noise of the impinging jet increases in all the cases in-
vestigated. The screech tone in the free configuration, lo-
cated at frequency f =29kHz, shows a small shift toward
lower frequencies as i/d decreases, while its maximum
value increases. At a different pressure ratio, NPR = 3.6,
the free jet shows two different screech tones with the
dominant tone at higher frequency (Fig. 5). When the
jet impinges on the plate at the same NPR the behavior
of the screech tones is different. As the nozzle-to-plate
distance changes, one of the tones cancel as an effect of
the disappearing of the corresponding oscillation mode.
This peculiar feature was found also for other values of
NPR and h/d and denotes the complex effect of the pres-
ence of the plate on the acoustic field. Table 1 reports the
comparison of the sound pressure level for the free and
impinging jet and for the two nozzle pressure ratio. For
each of the NPR values is evident a significantly increase
of the OASPL in presence of the solid surface in front of
the jet.

Finally Fig.6 summarizes the comparison between
the free and impinging configurations in term of the
Strouhal number St = fd/u where the reference fre-
quency is defined with the jet diameter d and its issuing
speed u. It can be observed that the general trade off is
almost the same, with exceptions in correspondence of
some values of NPR and h/d. As a final comment we
can note that though the free jet is largely investigated it
is worthwhile to compare its characteristics to the screech
tones that arise in the impinging configuration. Moreover
with these first measurements we didn’t observe the pres-
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TABLE 1: OASPL [dB] FOR FREE AND IMPINGING
JET. d = 0.4cm.

freejet h/d=10 h/d=9 h/d=38
NPR=2.9 15397 159.00 162.35 166.35
NPR=3.6 160.32 161.80 167.20 162.90
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FIGURE 6: SCREECH FREQUENCIES FOR FREE
AND IMPINGING JET AS FUNCTION OF NPR. d =
0.4cm

ence of the impinging tones. A further analysis is neces-
sary to increase the data base and achieve a better com-
prehension of the phenomenon, in particular the effect of
the presence of the plate on the oscillating modes of the
jet. We are now planning to upgrade the experimental rig
with a PIV system to have a quantitative details of the
fluid dynamic field to complete the analysis of the jet and
its correlation to the noise features.
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ABSTRACT

This paper examines aeroacoustic tone generation of
a high-speed planar gas jet impinging normally on a flat,
rigid surface. Experiments are performed over the
complete range of subsonic jet velocities and
impingement distance for which tones are generated for a
single jet thickness of A=3mm. The behavior of the
planar impinging jet case is compared to that of the
axisymmetric case and found to be significantly different,
with tones being excited at much larger impingement
ratios and beginning at lower flow velocities. The
acoustic tones have been found to be generated by both
symmetric and anti-symmetric shear layer modes of the
jet, which may also couple with resonant acoustic modes
occurring between the nozzle and plate surfaces. The
nature of the flow instabilities h