Five layer super-lattice structure in binary mixtures of ferroelectric and antiferroelectric liquid crystals

A. D. L. Chandani Perera1,2, Atsuo Fukuda1 and Jagdish K. Vij1*

1Department of Electronic and Electrical Engineering, Trinity College, University of Dublin, Dublin 2, Ireland

2Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka

Emergence of subphases having super-lattice structures with different periodicities other than 3 layer and 4 layer has been theoretically predicted [1-2] and experimentally observed [3-5], however, it was not widely accepted. In this paper, we shall report on the emergence of a biaxial subphase of 5 layer super-lattice structure, $q_T = 3/5$, in two binary systems with usual ordinary and unusual extraordinary phase sequences, observed in the E-T phase diagrams constructed by electric-field-induced birefringence measurements. Here, q_T is defined by, $q_T = [F]/[F]+[A]$, where, $[F]$ and $[A]$ refer to ferroelectric and antiferroelectric orderings respectively in a unit cell of the super-lattice structure. Binary mixtures of MHPOCBC and MHPOOCBC which show usual ordinary phase sequence of - SmC\textsubscript{A}* - SmC* - SmC\textsubscript{a}* - SmA were used in different MHPOOCBC wt\%, in the range of 63.3 wt\% - 65.5 wt\%. The other binary system studied consists of 10OHF and C11 showed SmC* - SmC\textsubscript{A}* - SmC\textsubscript{a}* - SmA unusual reversed phase sequence in heating. In both systems emergence of a biaxial subphase in a very narrow temperature range below SmC\textsubscript{a}* in the E-T phase diagram similar to a ferrielectric phase was identified suggesting 5 layer super-lattice structure.

Keywords: super-lattice structure, ferroelectric, antiferroelectric, five layer