Novel columnar-calamitic phase sequences in a binary system of bent-core and rod-like mesogens

D.S. Shankar Raoa, M. Vijay Kumara, S. Krishna Prasada, Uma S. Hirematha, M. Sarvamangalaa,b and S. Basavarajab

aCentre for Soft Matter Research, Jalahalli, Bangalore 560 013, Karnataka, India
bDepartment of Physics, Gulbarga University, Gulbarga 585 106, Karnataka, India

*email: skprasad@csmr.res.in

We describe here X-ray, electrical switching and dielectric measurements on a binary system comprising achiral bent core and chiral rod-like components \cite{1}. While the pure bent core compound exhibits a single mesophase, namely, the B2 phase, the rod-like compound shows smectic A and smectic C* mesophases. A particular mixture, studied in detail, presents a novel sequence of three columnar type B1 phases, smectic A \rightarrow B1\textsubscript{OPAF1} \rightarrow B1\textsubscript{OPAF2} \rightarrow B1\textsubscript{TPAF} \rightarrow smectic C* phase, as the sample is cooled, where the subscripts O, T, P, F and AF indicating, respectively, orthogonal, tilted, polar, ferroelectric and antiferroelectric property, with the B1 phases being of the B1\textsubscript{rev} type (Figure below shows the XRD pattern obtained in each of these phases). In the electrical switching measurements a twin peak profile -- characteristic of the antiferroelectric structure -- is seen for the B1\textsubscript{OPAF} phases, but with no textural change, except on a transient scale. On the other hand the B1\textsubscript{TPAF} phase which also shows an antiferroelectric-type switching, exhibits clear changes between the field-off and field-on states, as well as for the two signs of the field. This phase also possesses a three-time higher value of polarization than the smectic C* phase indicating the stronger influence of the polar ordering. Dielectric studies show the presence of a soft mode relaxation in the vicinity of the B1\textsubscript{OPAF2}\rightarrowB1\textsubscript{TPAF} transition with the relaxation frequency of the mode exhibiting a behavior similar to that seen for the smectic A-smectic C* phase transition. Mean field coefficients determining the soft mode behavior as well as the thermal variation of the tilt angle have been determined.