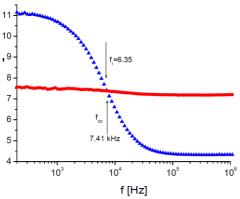
Liquid crystalline mixtures with low and medium birefringence for dual frequency addressing

R. Dabrowski, ¹ O. Chojnowska, ^{1*} K. Garbat, ¹ S. Urban, ² M. Celiński, ¹ R. Mazur, ³ W. Piecek³

1 Institute of Chemistry, Military University of Technology, Warsaw, Poland 2 Institute of Physics, Jagiellonian University, Krakow, Poland 3 Institute of Applied Physics, Military University of Technology, Warsaw, Poland


Dual frequency (DF) addressing technique is a very effective tool for shortening and symmetrisation of the response times (τ_{on} , τ_{off}), since they are both voltage dependent. For this purpose liquid crystal materials (LCMs) are needed, wherein dielectric anisotropy $\Delta\epsilon = \epsilon_{\parallel} - \epsilon_{\perp}$ changes its sign from a positive to a negative value, while the frequency of an electric field increases. Already known materials were designed using multiring cyanoesters^[1] as a component responsible for $\Delta\epsilon > 0$ at low frequency range, what exclude them to be controlled by an active matrix, because of a low holding ratio. Recently we have found that bicyclohexylbiphenyl derivatives of the formula $1^{[2]}$ exhibit flip-flop rotation around short axis at low frequency (f_r in the range 2-10 kHz at 20° C). They have simultaneously low melting temperatures, enthalpies and high chemical stability as well as high resistivity, therefore they can be useful for DF mixtures formulation.

$$H_{2n+1}C_n$$
 X_1 X_2 F Y Y_2 Y_3 Y_4 Y_4 Y_5 Y_5

wherein X₁ and X₂=F or H and Y=F, OCF₃, NCS

Convenient dielectrically negative low or medium birefringent liquid crystals such as compound 2 or 3 have been found.

$$H_{2n+1}C_n$$
 OR (2) and $H_{2n+1}C_n$ OR (3)

DF frequency mixture with Δn =0.1-0.3 and f_{co} =3-10 kHz at 20°C have been created. They have similar response times τ_{on} - τ_{off} and the total τ_{on} + τ_{off} < 1ms for applied voltage below 20 V. Examples of prepared LCMs for DF addressing will be presented in details.

Acknowledgement: This work was supported by the project of the Polish Ministry of Science and Higher Education PBS 847 and by the project POIG.01.03.01-14-016/08 "New photonic materials and their advanced application".

References:

[1] H. Xianyu, S.-T. Wu, C.-L. Lin, *Dual frequency liquid crystals: a review*, Liquid Crystals, **36** (6-7), 717–726 (2009).

[2] R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, S. Urban, *Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing*, Liquid Crystals, **40** (10), 1339-1353 (2013).

^{*} presenting author; E-mail: ochojnowska@wat.edu.pl