Seafloor mining is emerging as one of the leading anthropogenic threats to deep-sea hydrothermal vent ecosystems, yet international regulation of seabed mining is in its infancy. Deep-sea hydrothermal vents represent a collection of ecosystems that vary extensively in species composition, abundance, and biodiversity. This presents a challenge in anticipating the potential short- and long-term impacts of deep-sea mining on vent ecosystems.
The impact of that biodiversity loss to regional and global vent systems depends on the resilience of surrounding vent communities, the degree of connectivity between vent systems, and the biodiversity of these ecosystems. Global assessment of biodiversity at deep-sea hydrothermal vents is confounded by uneven sampling effort. Some vent systems have been visited hundreds of times by research vessels from multiple nations, while others have been visited by fewer than ten research expeditions. This broad disparity in sampling effort makes it difficult to directly compare biodiversity between different vent systems, and, in some cases, entire biogeographic provinces. Consequently, a biodiversity-based model for prioritizing deep-sea mining sites will favor well-studied vent systems.
How is the known biodiversity and species richness of hydrothermal impacted by sampling effort? What inferences can be made about the relative resilience of hydrothermal vent ecosystems based on biodiversity and species richness? Can biodiversity be used to inform the potential impact of deep-sea mining at relatively understudied vent systems?
An accurate assessment of global deep-sea hydrothermal vent biodiversity normalized against research effort is critical in informing long term, multi-stakeholder approaches to managing the nascent deep-sea mining industry.
Topics: Marine policy , Topics: Effective marine conservation planning , Topics: Other